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Epidemic Intervention Evaluation based on Dynamic Systems



Research Background and Significance
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Fig. The number of variants found in the world by April 19, 2022. Fig. The cumulative confirmed cases and recorded variants around the world.

Motivation: Multiple-variants coexistence; Viral mutation; Different interventions.

Research aim: To assess the effects of different interventions in the context of viral
mutation and multi-variant coexistence.

Achievement:
* ZhanC, Zheng Y, Shao L, Chen G, Zhang H. (2023). Modeling the spread dynamics of multiple-variant coronavirus disease under public health interventions: A general framework. Information Sciences, 628, 469-487. (JCR Q1) 5



Methods: framework

A

Proposed a single-virus dynamics model based on the COVID-19 pandemic.
Constructed the mechanism for variant mutation and vaccination.

Extended the single-virus dynamics model to multi-variant.

Estimated the impact of intervention measures.

The process for each iteration

Determine if the cumulative number of
infections exceeds a threshold and if so
select one of the viruses to mutate once.
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Methods: Epidemiological model

Proposed a single-virus dynamics model
based on the COVID-19 pandemic.

* Deceased
. ) (i) . &
Bl O S~ 0 ugg A® :
Susceptible s P Exposed Asymptomatic @ Dz(:)
; ud Deceased
u(l) ”(l) from
v vY|  Infection o a Unreported
O]
) () ; (@) D.
|| u® & gt c® Yea »  Deceased
| vy Unreported Confirmed o
Vaccination , Confirmed
() () @
Yur y(,‘l yar
R RO R
) ) Recovered Recovered Recovered
Recovered from from from
Unreported Confirmed Asymptomatic
% Voo ¥s

Fig. Flow chart of epidemic model.
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Methods: Variant mutation and vaccination simulation

Variant mutation

A mutation occurs when the number of infections reaches a threshold.
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Vaccination

If a variant is confirmed as a "dangerous variant", then a vaccine will be
developed against it.
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Methods: Intervention simulation

Different parameters correspond to different interventions, and changing them can
simulate changes In intervention intensity.
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Fig. Factors can be varied by intervention measures in the framework.



Experimental Results
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Experimental Results

For single intervention, strictly restricting social contact and enhancing the vaccine acceptance rate

yield the most optimal intervention for eradicating the pandemic.

Combined interventions are highly effective in containing or even eradicating the pandemic.

The influence of factors.

Single intervention Intervention scenario Almost no effect Greatly contain Eradicate Criterion p;, Criterion pf
Non-pharmaceutical interventions
(1) Restrict social contact 0.72a',0.72¢.,0.72a"’ v 0.00036 0.05662
(2) Strict Quarantine of confirmed cases Oaff;'l 0.38394 0.29073
Pharmaceutical interventions
(3) Increased recovery rate 9}1:;': 0.61740 0.15102
(4) Reduce mortality rate 0.7 / 0.95451 0.29633
(5) Enhance testing capacity 95t 95 0.51148 0.32556
Vaccines
(6) Enhance vaccine acceptance rate ¥p =1 v 0.00067 0.08809
(7) Accelerating vaccine development Ty ; =30 days v 1.00000 1.00000
(8) Enhance virus monitoring I =10,000 o 1.00000 0.98548
Natural process
(9) Slowed virus mutation rate 100N 54 0.22690 0.26870
Combination of intervention strategies
(10) Combination strategy 1: (1) + (2) + (5)  0.8a'’,0.84\",0.8q}"; / 0.00006 0.05035
V. agl) ol
0.7a.";3p%) 3%
(11) Combination strategy 2: (2) + (3) + (5)  0a’:97"); 0.00243 0.02343
9Bye 98,
(12) Combination strategy 3: (5) + (6) 350 3p4): 4, =095 v 0.00061 0.07008

1]

Note: Almost no effect: 0.9 < p;;; Contain: 0.4 < p;; <0.9; Greatly contain: 0.001 < p;; < 0.4; Eradicate: p;; = 0 (p;; <0.001).
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Conclusion

» We proposed a novel epidemiological framework for simulating the emergence of
realistic COVID-19 virus mutations and the transmission of multiple variants with
human interventions.

* In scenarios with single interventions, strictly restricting social contact and enhancing
the vaccine acceptance rate are the optimal interventions to contain and eradicate

epidemics when considering the occurrence of virus mutations and multiple variants
coexistence.

« By combining several intervention strategies, results show that the combined
Interventions are highly effective in containing or even eradicating the pandemic.

« Without any intervention, multiple variants can lead to multiple outbreaks.

12
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|dentifying Epidemic Transmission based on
Metaheuristic and Dynamic Systems



Research Background and Significance
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Fig. Contact network with susceptible, infected, and recovered individuals. Fig. Contact network with 3 sub-networks (cities).

Motivation: Migration of individuals between intercity; A lot of unknown parameters are
hard to determine.

Research aim: Predict the dynamic change in the number of COVID-19 infections based
on the epidemic model and the intercity human migration network.

Achievement: 15
* ZhanC, Zheng Y, Lai Z, Hao T, Li B. Identifying epidemic spreading dynamics of COVID-19 by pseudocoevolutionary simulated annealing optimizers[J]. Neural Computing and Applications, 2020: 1-14. (JCR Q2)



Methods: SEIR-Migration
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Fig. Susceptible-Exposed-Infected-Recovered model (SEIR).
Susceptible (S), exposed (E), infected (I), and recovered/removed (R).

Mathematical definition of SEIR:

Fig. Intercity travel network of main cities in China on February 10, 2020 with 367 cities.
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Methods: SEIR-Migration

Mathematical definition of SEIR-Migration:

Each equation represents one type of individual transmission.
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Methods: Pesudocevoluionary simulated annealing optimizers

1. Tune all the 5K+3 parameters in the main procedure.
Then, the root mean square percentage error (RMSPE) to
measure the difference between the real infection and the
estimated infection.

2. The estimated infected individuals generated by this
extended SEIR-migration model.

3. Find the index of the M1 largest RMSPE and only tune
the parameter sets of the corresponding cities.

4. Randomly select M2 cities and adjust their parameters to
avoid the parameters of some cities that have not been
adjusted.

Algorithm 3 Pesudocoevolutionary algorithm for estimating the optimal parameter set ©*

Input: The set of unknown parameters and initial number of infected and exposed individuals of each city
0= {IWH_O,EWH_O,R’;,&,6‘-2,--.- Bk}, where 6; = {a;, 55,75, 85,6} and j =1,2,--- K;

Output: Optimal parameter set ©%;
Initialisation : Initialize temperature T', and random starting point

B¢ = O + krand * (O — O1),

The index of adopted cities is ® =1,2,.-- |, K. B
1: Apply Algorithm-2 to optimize parameter set to achieve ©*.

O — 6"
LOOP Process
2: for i =0 to M do
3 for j=1to K do
4 Set the  model parameter as (SH and apply Algorithm-1 to derive
{£(ta]©0), 1(t1100), -+ , I(tw [€0)}.
5: Using evaluation criteria (13) to derive RMSPE; for each city.
6: Find the index of the M1 largest RMSPE; and set @ = {ay,as, - ,ap }, where a; represents the

index of the i-th largest RMSPE;.

Apply Algorithm-2 to optimize parameter set to achieve ©*.

@0 — é*
8: Randomly generate M2 unique integers a; between 1 andiK and set ® = {a1, a2, - ,am2}.
9: Apply Algorithm-2 to optimize parameter set to achieve ©*.
0y — O~
10:  end for
11: end for
0" — B

12: return Optimal parameter set 9%,

18



Experimental Results

The proposed model can estimate the daily number of infected, exposed, and recovered
Individuals in all 367 cities.
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Fig. Estimated historical data and prediction of the number of infected individuals for next 150 days.
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Conclusion

« \We integrate daily intercity migration data and traditional SEIR model to
develop an extended SEIR model.

« Anovel pseudocoevolutionary simulated annealing algorithm is proposed and
have a best performance by comparing the estimation result with simulated
annealing, particle swarm optimization, and pattern search algorithms.

« The migration control may extremely effective in controlling the spread of the
epidemic.

20
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Forecasting Infectious Disease Transmission based on
the Hybrid Machine Learning Model



Research Background and Significance
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Fig. The cumulative confirmed cases in the world up to Sep 2020. Fig. The daily confirmed cases and tests over the world up to Sep 30, 2020.

Motivation:

The daily COVID-19 cases In different areas are highly volatile and variable; Epidemic cases
are affected by multiple factors

Research aim: Predicting the dynamic change in the number of COVID-19 infections and
the number of nucleic acid tests worldwide.

Achievement:
* ZhanC, Zheng Y, Zhang H, Wen Q. Random-Forest-Bagging Broad Learning System with Applications for COVID-19 Pandemic[J]. IEEE Internet of Things Journal, 2021. (JCR Q1) 23
* LinJ, Tan M, Zheng Y, Wu K, Zhan C. "Detection Capability Prediction Based on Broad Learning System During The COVID-19 Pandemic." 2021 16th international conference on intelligent systems and knowledge engineering (ISKE). IEEE, 2021. (El)



Methods: Broad Learning Systems (BLS), Bagging

1. The broad learning system employs incremental learning, expanding neural nodes and
updating network weights as needed, without stacking layers.

2. Bagging is the ensemble learning method that is commonly used to reduce variance
within a noisy data set.

Output Y . .
. . . Original Data
|
/0@ S e L | D O Q. [ I 000 00
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V4 ”L] 7 H Classifier Classifier Classifier
POW, + . )i=L-.n. C([Z.2,. 2, W+ B, ). ) =L..m.
[ |
3 Aggregating
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Fig. Structure of BLS. Fig. Structure of Bagging.
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Methods: Random Forest-Bagging-BLS (RF-Bagging-BLS)

The Random Forest model and ensemble learning-bagging are adopted to enhance
the performance of BLS for the prediction of the spread of COVID-19.

Tramning setD,

X

train

train

Input l

Random
Forest

Train l

Derive the
umportance of
features and
select feature

Training set D,

X, | v

_______________________________________________ 1
RF-Bagging-BLS |
—————————————————————————————————————— -
Bagging-BLS |l
. . |
Sampeling | _ . |Tramn— 1 |l
Sub-traming Set 1 Sub-BLS [
L
: [
Sampelimg [ _ L (|
Sub-tramimg Set 2 T
L
Boostrap Sampeling |
strap Sampeling . Average |

: : Ld . .
and Rani:lom selection . ¢ combination [
teature strategy |
L
L

Sampeling w

D e Sub-tra ming Set 7’ : :
L — (e e e e - |

Fig. Structure of RF-Bagging-BLS.
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Experimental Results

Establish data set on the COVID-19 pandemic in 184 countries and 1241 areas from Dec
2019 to Sep 2020.

For comparison, the correlation analysis was used in feature selection for other classical models.

Tab. Feature after feature engineering Tab. Selected features in the classical models
Original features Selected features | Description
Ic(t) Cumulative confirmed cases at time ¢ Cumu]atlve Conﬁrmed cases
R(t) Total recovered cases at time ¢ Ic(t —m) atday t —m (m=1,---,7)
D(t) Death toll at time ¢ , o
Np(t)  Cumulative COVID-19 tests at time ¢ R(t —m) g‘?tdl re(:OVfEred_Caies al 7
zr o  The latitude of the geographical location of an area .. ayt=mim =1, ,
zro  The longitude of the geographical location of an area Original D(t — k) Death toll at day
zcr  The continent to which an area belongs features t—m ("_’n =1,---,7)
zp  The level of economic development of an area Nr(t —m) Cumulative COVID-19 tests
zp  The population of an area T atdayt—m (m=1,---,7)
Augmented features The population of an area
Al (t)  Daily confirmed cases rp
AR(t)  Daily recovered cases Activate COVID-19 patients at
A?Et; Daily deaths I(t —m) dayt—m(m=1,---,7)
t Active COVID-19 patients .

ANp(t)  Daily COVID-19 tests fAutgmented Al (t —m) fl)allg conﬁrmed_c:ises at -
rr(t)  Daily growth rate of confirmed cases catures ayt—m (m=1,--,7)
rr(t)  Daily growth rate of daily recover cases ANp(t —m) Daily COVID-19 tests at
rp(t)  Daily growth rate of daily death cases dayt—m(@m=1,---,7)

Fig. Distribution of correlation coefficients
between features and output.
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Experimental Results
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Fig. Predictive results of different areas.

2020-07-01

Experimental results show that the proposed RF-Bagging-BLS
achieve the best value among all the comparison algorithms.

We also test CNN, LSTM, and GRU based on our data set.
However, these methods are easily overfitting.

Tab. Prediction result of y(t + n)

Method RMSE MAE R? MAD R? di MAPE
LR 3394.6494 | 1601.8012 | 0.9994 | 642.4868 | 0.9994 | 3.2467
KNN 32267.9550 | 16772.8781 | 0.9483 | 6280.7837 | 0.9483 | 22.3130
DT 24733.7204 | 10304.4542 | 0.9706 | 1423.0000 [ 0.9696 | 10.8748
SVR 53319.4198 | 23591.0204 | 0.8634 | 8708.3930 | 0.8589 | 63.6835
Ada 17861.0283 | 5933.6822 | 0.9846 | 1196.0000 | 0.9842 | 5.5883

RF 23770.2149 | 8554.5544 | 0.9728 | 1218.9372 | 0.9719 | 6.7004
GBDT 21103.7782 | 7325.3585 | 0.9786 | 977.8010 | 0.9778 | 7.2672
ET 19635.1575 | 6997.1890 | 0.9814 | 1469.4092 | 0.9808 | 6.7076
CAT 25744.2812 | 8687.9153 | 0.9681 | 1351.8562 | 0.9671 | 7.3150
LGB 25470.3411 | 9120.9554 | 0.9688 | 973.4710 | 0.9678 | 7.9324
XGB 24354.7123 | 8455.0691 | 0.9715 | 1082.3067 | 0.9705 | 6.8996
BLS 2269.8906 | 1362.8407 | 0.9997 | 766.4345 | 0.9997 | 6.7834
RF-BLS 2042.4723 | 1018.2183 | 0.9997 | 565.5706 | 0.9997 | 6.4979
Bagging-BLS 2872.1029 | 1475.1688 | 0.9996 | 697.3510 | 0.9995 | 3.9903
RF-Bagging-BLS | 1989.1970 | 952.5739 | 0.9998 | 432.3244 | 0.9998 | 3.0090
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Experimental Results

Previous work:
In some cases, data-driven methods
perform well when the output data are

close to a uniform or normal distribution.

However, the predictive value with a
uniform or normal distribution does not
help in  improving the predictive
performance in this study.

Tab. Predictive result of log,, y(t + n)

Method RMSE MAE R? MAD RZ MAPE
LR 57387.6106c+9  76255.7453¢+8  -1.5816e+17  21649.1423  -1.634de+17  2.5650+9
KNN 325893837 132720041 (.9498 3875.6634 0.9472 13.7311
DT 20441.1788 9758.9613 0.9799 3664.0001 0.9792 31.8415
SVR 119751.7181 43284.9216 0.3113 6676.6545 0.2883 28.2169
Ada 27126.1988 9364.6234 0.9646 1033.5000 0.9634 5.9561
RF 23413.5558 8136.2741 0.9736 1090.4159 0.9727 5.2950
GBDT 25739.2592 9643.7920 0.9681 1791.4312 0.9671 8.3891
ET 21978.5323 7612.5017 0.9768 1292.7426 0.9760 6.1060
CAT 31788.7347 11952.3085 0.9515 1533.8260 0.9498 8.4482
LGB 24249.7400 8033.8196 0.9717 939.8207 0.9708 5.4479
XGB 29203.4126 9389.2712 0.9590 1107.6260 0.9576 5.5478
BLS 35079.3674 16463.1951 0.9409 91453791 0.9389 27.6222
RF-BLS 39131.9767 23896.6042 0.9265 9328.3896 0.9255 40.3023
Bagging-BLS 13539.3023 9882.3092 0.9911 7690.6102 0.9909 23.0960
RF-Bagging-BLS  35793.3709 19923.3754 0.9384 8895.5277 0.9376 39.5285
Tab. Predictive result of y(t + n)
Method RMSE MAE R? MAD R2,  MAPE
LR 33946494 16018012  0.9994 6424868  0.9994  3.2467
KNN 32267.9550  16772.8781  0.9483  6280.7837  0.9483  22.3130
DT 24733.7204 103044542 0.9706  1423.0000  0.9696  10.8748
SVR 53319.4198  23591.0204 0.8634  8708.3930  0.8589  63.6835
Ada 17861.0283  5933.6822  0.9846  1196.0000 0.9842  5.5883
RF 23770.2149 85545544 09728 12189372 09719  6.7004
GBDT 21103.7782 73253585  0.9786  977.8010  0.9778  7.2672
ET 19635.1575  6997.1890  0.9814  1469.4092 09808  6.7076
CAT 25744.2812  8687.9153  0.9681  1351.8562 0.9671  7.3150
LGB 25470.3411  9120.9554  0.9688  973.4710  0.9678  7.9324
XGB 24354.7123  8455.0691  0.9715  1082.3067 0.9705  6.8996
BLS 2269.8906  1362.8407  0.9997 7664345 09997  6.7834
RF-BLS 20424723 10182183  0.9997  565.5706  0.9997  6.4979
Bagging-BLS 2872.1029 1475.1688 0.9996 697.3510 0.9995 3.9903
RF-Bagging-BLS ~ 1989.1970 9525739  0.9998  432.3244  0.9998  3.0090
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Conclusion

» \We collect and unified one comprehensive data set, including the epidemic spread data,
geographic information, economic information, population, and COVID-19 testing
Information of 184 countries and 1241 areas.

* Ahybrid machine learning model of RF-Bagging-BLS is developed for predicting the
COVID-19 trend in different countries, which showed promising performance in timely
short-term forecasts without the requirement of epidemiological models.

« The predictive value with a uniform or normal distribution does not help in improving
the predictive performance in the COVID-19 infection prediction.
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Quantitation of Pandemic Outbreak Impact
based on Statistical Model



Research Background and Slgnlflcance

COX ID 19 Qltngency I1de Feb 20, 202 2
cators including school closure

Fig. Global heat map of COVID-19 stringency index, February 20, 2022.

Fg .=>x
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Motivation: The impact of the epidemic on the entertainment industry was unknown; no

prediction tool for online game stream

Research aim: Quantifying the impact of the COVID-19 pandemic on movies and online
games, and building the prediction models of box office and online player’s numbers.

Achievement:

*  Zheng Y, Zhen Q, Tan M, Hu H, Zhan C. “COVID-19’s impact on the Box office: Machine Learning and Difference-in-Difference.” 2021 16th international conference on intelligent systems and knowledge engineering (ISKE). IEEE, 2021. (El) 32
*  WuS, HuH, Zheng Y, Zhen Q, Zhang S, Zhan C. "The impact of COVID-19 on online games: Machine learning and Difference-In-Difference." CCF Conference on Computer Supported Cooperative Work and Social Computing. Springer, Singapore, 2021. (El)



Methods: difference-in-difference (DID) model

Quantified the impact of the pandemic on daily box office and online players by the
difference-in-difference method.

COVID-19 Pandemic

A .
e 2020 Mathematical definition of regression analysis of DID:
—_— = 2019 . uanti
: uantly y=Po+ BT+ BS+B3(T-85)+e¢
£ s=1
° :
>< n L]
@ . - -t Calculation of intervention effect coefficient S5:
— . A o~
SZO///E i ﬂOZE(yITZOaSZO)
: . Bi=Ey|T=1,5=0—-EYy|T=0,5=0)
T=0 T=1 B,=Ey|T=0,8S=1)-E(y|T=0,5=0)

o Date Bs=[E(y|T=1,8=1)-E(y|T=0,8=1)]
Fig. difference-in-difference model _ [E(y |T=1,8=0)— E(y | T=0,S =0)]



Prediction Framework

Explored the impact of epidemic features on predictive modelling.

Feature engineering Machine learning predictive modeling
Pl : ‘ N
([ Box office | | Experiments 1: The prediction of the cumulative
1 features | e global box office based on the dataset that does
I g not join the COVID-19 features.

I Time I \_ )
1| features )
e p 4 )

Experiments 2: The prediction of the cumulative
[ COVID-19 ] |:> global box office based on the dataset that added

features the COVID-19 features.
\_ J




Experimental Results

Tab. Quantitative result.

Variable Coefficient
T-S —8.456"*(0.323)
T 1.876***(0.151)
S 1.260***(03157)
€ 14.23"*(0.120)
R? 0.590

Note : Robust standard errors in parentheses

x % *p < 0.01, % xp < 0.05,"p < 0.1

Tab. Prediction result of experiment without epidemic features.

Estimated coefficient
o
i
1
H
H
i
i
i
i

Model MAPE RMSE | MAE R
LR  10.6939 19232852.6366 13180724.7015  0.9277
GBDT 14.404 = 27070929.4065 21926058.8144  0.8569
Ada  30.5505 36755333.2194  30258660.7305  0.7361
RF 243341 374738952314  26794616.6136  0.7257
SVR  19.9977  38720566.4797  30448341.6686  0.7071
EXT = 39.8577 75465184.4287  63664650.7227 —0.1124
DT 479107 93044797.2858  75406330.7113  —0.691
KNN  71.9418 139174211.146 118802756.3855 —2.7834
MLP  84.4943 154523408.4404 135487709.9276 —3.6639
LGB  151.9525 200942540.9506 187382988.0388 —6.8869

Tab. Prediction result of experiment with epidemic features.

<=4-3 2 -1 0 1 2 3 >=4
Week

Fig. Parallel trend test result.

Model MAPE RMSE | MAE R
EXT 13.0756 18978870.5778  14320150.7542  0.9296
GBDT 16.8319 26273880.9723  19550281.2743  0.8652
MLP 14.8964 33027102.6926 24329214.3868  0.7869
DT  29.2268 53179893.8243  41400820.8479  0.4476
LR  36.3958 55167314.7062  48379764.724  0.4055
RF  36.046 69380517.3971 55358251.1509  0.0598
Ada  56.1211 74741304.749  65278153.5556 —0.0911
LGB 78.4685 79813783.3509 63971288.3595 —0.2443
SVR  89.9288 97213514.2064 86030594.5032 —0.8459
KNN  68.4771 136564744.1887 116181101.6124 —2.6428




Conclusion

 Established a research dataset including the information of movies, popular games,
and COVID-19.

« Developed the Difference-in-Difference method to quantify the impact of the
COVID-19 pandemic on the daily global box office and online game players. The
results show that the pandemic has a negative effect on both box office and online
game platforms.

« Used machine learning, ensemble learning, and deep learning to build a predicted
model of daily global box office and online players. And explored the impact of the
pandemic and human mobility on prediction models.
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Assoclation of Human Mobility and Weather on
Mosquito Activity based on Statistical Model



Research Background and Significance

& ¥

Plasmodi um
(protozoan

Fig. Mosquito-Borne-Diseases and transmission of Dengue Fever.

Motivation:
Human activities overlap with mosquito activities; human mobility and weather lag influences

the abundance of mosquitoes is still unknown

Research aim: Assess the influence of human mobility and weather on the abundance of
mosquito (Aedes albopictus).
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Achievement:
Zheng Y, Yue K, Wong, Eric W M, Yuan, H Y. Association between meteorological factors and human mobility with mosquito activity risk in Hong Kong. medRxiv (2024). (Submitted to journal)



Methods: Framework

Human mobility indices and weather conditions together with Aedes albopictus abundance and extensiveness
were obtained. Distributed lag non-linear models with mixed-effects models were used to explore their
influence in Hong Kong.

Data Model selection Exploration
F ___________ =2 T ™ /T N
| . I .
I Input variables I Data processing The best model
| : 1 -
I'| Meteorological factors |1 Jd L J L
' I NV \/
: : Variable selection Impacts of
: ERRnan bl : = meteorological faf:Fors
: : ! ! and human mobility
P 1 (1
: Cross-validation JVL’
Output variables Proiect; :
— rojections using
Gravidtrap indices: \ mobility data from:
. 1. the same year (2022)
extensiveness e .
Lag assessment 2. the previous year (2021)
K / abundance / \ / \3. the pre-pandemic periodJ

Fig. Research framework.



Methods: Framework and DLNM

Let A; be the mosquito number per 1000 traps at month t.

At ~ NB(utl K)

The regression model to predict mosquito abundance was:

log(A) =B+y+S+fw(T,l)+f.wR,l,)+my +«a

where f.w(Rs, ;) and f.w(Ty, 1,) represent the nonlinear exposure-lag functions of total rainfall R, from
0 to I; months and mean temperature T, from 0 to I, months in t** month, respectively; S is the area
random effect; y is the monthly random effect; 5 is the yearly random effect; a is the intercept; and m; is

the human mobility index in one category (e.g. residential areas, workplaces, or parks) at tt* month.



Experimental Results: Data set

Data period: from April 2020 to August 2022.

Daily data; 53 mosquito monitoring traps; 13 weather stations.
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Fig. The monthly change in mosquito abundance and its predictors in Hong Kong. (A)

Mosquito abundance; (B) Total rainfall; (C)

Human mobility; (D) Mean temperature.



Experimental Results: Prediction results and impact of mobility

« The prediction model performs the best when incorporating human mobility in residential.
« The reduction in the residential index correlated with a rise in mosquito abundance.

* If human mobility (i.e. residential) returned to normal in 2022, the risk of mosquito activity would increase
significantly (more than 80%) during the peak.

A B i . :
Hong Kong Island & Kowloon Hong Kong Island & Kowloon Tab Comparlson Of Candldate mOdeIS fOI‘ mOSC]UI'[O abundance

-LOOCV -Fitted .

B 757 -Observed §7-51 ggman ngobility returns to normal Model Model formula WAIC Il_\?)SOECIC/

k] S, |-Observe

'35-0' '35-0'78ame human mobility as 2021 Model A1 B+y+S+a 741.12

8251 Jr N A 82.5-/\\’¥/\\4/\§ Model A2 B+y+S+f.wR,6)+a 72731 —

Eoo n - E oo Model A B+y+S+fwR,6)+ f.w(T,2) +a 68160  0.63

: ) New Territories East : ' New Territories East Model A-M, B+y+S+fwR,6)+fw(,2)+m,+a 677.92 0.65

87 5 8751 Model AMw B +y+S+f.wR,6)+fw(l2)+m, +a 65889 046

‘© 5.0- © 5.0- Model A-M; B+y+S+fwR,6)+fw(l,2)+m +a 651.87 0.37

e / Ao Model AM1  B+y+S+f.w(R,5) +f.w(T,2)+m, +a  666.57 —

S250 " JA 8 2_5-/\\x/\_\ Model A-M2 ~ B+y+S+f.wR,4) + fw(T,2)+m, +a  668.37

é 0.0 = < - %0.0- = Model AM3  B+y+S+fwR,3)+fw(,2)+m +a 66426

= New Territories West - New Territories West Model A-M,4 B+y+S+f. W(Rt.z) +Fw(Tn2) +m +a 671.56

é 7 .51 é 7 .51 Model A-M;5 B+y+S+fwR, D+ fw(,2)+m. +a 669.79 —

g 5 0 g 5 O Model A-M:6 B+y+S+fwR,O)+fw(T,D+m +a 653.22 —

c » c o Lo ; . ; ;

£2.51 \ A gz.s—/\\/\\A Tab. Mobility coefficient in different prediction models.
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S OO DD R Y N S S S A . Model Variable Coefficient (95% CI)
QY & & Q¥ O ¥ O ' M OO Model A-Mp m 0.0122 (-0.0007, 0.0253)
FPFFIPFFIFFFE FPFPFFF @ g
T O NS IT O NS IO SO NSTIT O NI O Model A-M; m, -0.0753 (-0.1182, -0.0332)
Date Date Model A-My m, 0.0305 (0.0119, 0.0496)

Fig. Comparison of observed and predicted results using the best model for mosquito abundance. -



Experimental Results: Effects of weather

A -
. 600 ©
Total rainfall: ~ Iz.o o
£ 500
E R
- -y - - - — 400 | =
Heavy rainfall conditions (>500 mm) within 3 s S o
months were associated with a higher risk of € — 8
mosquito activity. On the other hand, low g‘m' e I
rainfall (<50 mm) was associated with a higher 1007 i . = e
risk with a longer lag of about 4.5 months. T 2 5 .t s T o 200 300 400 50 600
Lag (months) Total rainfall (mm)
¢ 0 D o
O 28 -
Mean temperature: < IZ-O o
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Temperature was positively associated with S 4 - 2ol A
mosquito activity until exceeding a threshold. § 20 — ., § =
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Fig. Effects of total rainfall and mean temperature on mosquito extensiveness using the best model.
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Conclusion

« Human mobility is a critical factor in mosquito prediction, which helps to improve the
performance of abundance and extensiveness prediction.

« Heavy rainfall and low rainfall both have a positive association with mosquito activity
In long lag (>3 months later). Temperature was positively associated with mosquito activity
until exceeding a threshold.

 Social distancing measures may be an important intervention to change mosquito
abundance and extensiveness.

45



Thank you!



